A novel PRRX1 loss-of-function variation contributing to familial atrial fibrillation and congenital patent ductus arteriosus

一种新的 PRRX1 功能丧失变异导致家族性心房颤动和先天性动脉导管未闭

阅读:6
作者:Zun-Ping Ke, Gao-Feng Zhang, Yu-Han Guo, Yu-Min Sun, Jun Wang, Ning Li, Xing-Biao Qiu, Ying-Jia Xu, Yi-Qing Yang

Abstract

Atrial fibrillation (AF) represents the most common type of sustained cardiac arrhythmia in humans and confers a significantly increased risk for thromboembolic stroke, congestive heart failure and premature death. Aggregating evidence emphasizes the predominant genetic defects underpinning AF and an increasing number of deleterious variations in more than 50 genes have been involved in the pathogenesis of AF. Nevertheless, the genetic basis underlying AF remains incompletely understood. In the current research, by whole-exome sequencing and Sanger sequencing analysis in a family with autosomal-dominant AF and congenital patent ductus arteriosus (PDA), a novel heterozygous variation in the PRRX1 gene encoding a homeobox transcription factor critical for cardiovascular development, NM_022716.4:c.373G>T;p.(Glu125*), was identified to be in co-segregation with AF and PDA in the whole family. The truncating variation was not detected in 306 unrelated healthy individuals employed as controls. Quantitative biological measurements with a reporter gene analysis system revealed that the Glu125*-mutant PRRX1 protein failed to transactivate its downstream target genes SHOX2 and ISL1, two genes that have been causally linked to AF. Conclusively, the present study firstly links PRRX1 loss-of-function variation to AF and PDA, suggesting that AF and PDA share a common abnormal developmental basis in a proportion of cases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。