Montelukast Prevents Early Diabetic Retinopathy in Mice

孟鲁司特可预防小鼠早期糖尿病视网膜病变

阅读:18
作者:Reena Bapputty, Ramaprasad Talahalli, Simona Zarini, Ivy Samuels, Robert Murphy, Rose Gubitosi-Klug

Abstract

Chronic inflammation and oxidative stress are critical components in the pathogenic cascade of early diabetic retinopathy, characterized by neuronal and vascular degeneration. We investigated pharmacologic inhibition of the proinflammatory leukotriene cascade for therapeutic benefit in early diabetic retinopathy. Using the streptozotocin-induced diabetes mouse model, we administered montelukast, a leukotriene receptor antagonist, and diabetes-related retinal pathology was assessed. Early biochemical and cellular function measures were evaluated at 3 months' diabetes duration and included vascular permeability, superoxide production, leukotriene generation, leukocyte-induced microvascular endothelial cell death, and retinal function by electroretinography. Histopathology assessments at 9 months' diabetes duration included capillary degeneration and retinal ganglion cell loss. Leukotriene receptor antagonism resulted in a significant reduction of early, diabetes-induced retinal capillary leakage, superoxide generation, leukocyte adherence, and leukotriene generation. After 9 months of diabetes, the retinal microvasculature from untreated diabetic mice demonstrated a nearly threefold increase in capillary degeneration compared with nondiabetic mice. Montelukast inhibited the diabetes-induced capillary and neuronal degeneration, whether administered as a prevention strategy, immediately after induction of diabetes, or as an intervention strategy starting at 4.5 months after confirmation of diabetes. Pharmacologic blockade of the leukotriene pathway holds potential as a novel therapy to prevent or slow the development of diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。