Deficient BH4 production via de novo and salvage pathways regulates NO responses to cytokines in adult cardiac myocytes

通过从头和补救途径产生的 BH4 不足会调节成年心肌细胞对细胞因子的 NO 反应

阅读:8
作者:Irina A Ionova, Jeannette Vásquez-Vivar, Jennifer Whitsett, Anja Herrnreiter, Meetha Medhora, Brian C Cooley, Galen M Pieper

Abstract

Adult rat cardiac myocytes typically display a phenotypic response to cytokines manifested by low or no increases in nitric oxide (NO) production via inducible NO synthase (iNOS) that distinguishes them from other cell types. To better characterize this response, we examined the expression of tetrahydrobiopterin (BH4)-synthesizing and arginine-utilizing genes in cytokine-stimulated adult cardiac myocytes. Intracellular BH4 and 7,8-dihydrobiopterin (BH2) and NO production were quantified. Cytokines induced GTP cyclohydrolase and its feedback regulatory protein but with deficient levels of BH4 synthesis. Despite the induction of iNOS protein, cytokine-stimulated adult cardiac myocytes produced little or no increase in NO versus unstimulated cells. Western blot analysis under nonreducing conditions revealed the presence of iNOS monomers. Supplementation with sepiapterin (a precursor of BH4) increased BH4 as well as BH2, but this did not enhance NO levels or eliminate iNOS monomers. Similar findings were confirmed in vivo after treatment of rat cardiac allograft recipients with sepiapterin. It was found that expression of dihydrofolate reductase, required for full activity of the salvage pathway, was not detected in adult cardiac myocytes. Thus, adult cardiac myocytes have a limited capacity to synthesize BH4 after cytokine stimulation. The mechanisms involve posttranslational factors impairing de novo and salvage pathways. These conditions are unable to support active iNOS protein dimers necessary for NO production. These findings raise significant new questions about the prevailing understanding of how cytokines, via iNOS, cause cardiac dysfunction and injury in vivo during cardiac inflammatory disease states since cardiac myocytes are not a major source of high NO production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。