A Strategy for Simultaneous Engineering of Interspecies Cross-Reactivity, Thermostability, and Expression of a Bispecific 5T4 x CD3 DART® Molecule for Treatment of Solid Tumors

用于治疗实体肿瘤的双特异性 5T4 x CD3 DART® 分子的跨物种交叉反应性、热稳定性和表达的同步工程化策略

阅读:10
作者:Renhua R Huang, Michael Spliedt, Tom Kaufman, Sergey Gorlatov, Bhaswati Barat, Kalpana Shah, Jeffrey Gill, Kurt Stahl, Jennifer DiChiara, Qian Wang, Jonathan C Li, Ralph Alderson, Paul A Moore, Jennifer G Brown, James Tamura, Xiaoyu Zhang, Ezio Bonvini, Gundo Diedrich

Background

Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. Method: To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level.

Conclusions

This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.

Results

This approach generated multiple DART molecules that exhibited significant improvements in all three properties. The lead DART molecule demonstrated potent in vitro and in vivo anti-tumor activity. Although its clearance in human FcRn-transgenic mice was comparable to that of the parental molecule, faster clearance was observed in cynomolgus monkeys. The lead α5T4 x αCD3 DART molecule displayed no evidence of off-target binding or polyspecificity, suggesting that the increased affinity for the target may account for its accelerated clearance in cynomolgus monkeys. Conclusions: This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。