Involvement of sphingosine kinase in plant cell signalling

鞘氨醇激酶参与植物细胞信号传导

阅读:11
作者:Dawn Worrall, Yun-Kuan Liang, Sergio Alvarez, Geoff H Holroyd, Sarah Spiegel, Michael Panagopulos, Julie E Gray, Alistair M Hetherington

Abstract

In mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1-phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules. We show that Sphingosine kinase1 (SPHK1) encodes an enzyme that phosphorylates sphingosine, phytosphingosine and other sphingoid long-chain bases. The stomata of SPHK1-KD Arabidopsis plants were less sensitive, whereas the stomata of SPHK1-OE plants were more sensitive, than wild type to ABA. The rate of germination of SPHK1-KD was enhanced, whereas the converse was true for SPHK1-OE seed. Reducing expression of either the putative Arabidopsis S1P phosphatase (SPPASE) or the DPL1 gene, which encodes an enzyme with S1P lyase activity, individually, had no effect on guard-cell ABA signalling; however, stomatal responses to ABA in SPPASEDPL1 RNAi plants were compromised. Reducing the expression of DPL1 had no effect on germination; however, germination of SPPASE RNAi seeds was more sensitive to applied ABA. We also found evidence that expression of SPHK1 and SPPASE were coordinately regulated, and discuss how this might contribute to robustness in guard-cell signalling. In summary, our data establish SPHK1 as a component in two separate plant signalling systems, opening the possibility that phosphorylated long-chain sphingoid bases such as S1P and phytoS1P are ubiquitous messengers in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。