Metformin reduces pleural fibroelastosis by inhibition of extracellular matrix production induced by CD90-positive myofibroblasts

二甲双胍通过抑制 CD90 阳性肌成纤维细胞诱导的细胞外基质产生来减轻胸膜弹力纤维增生

阅读:6
作者:Yoichiro Aoshima, Yasunori Enomoto, Atsuki Fukada, Yuki Kurita, Sayomi Matsushima, Shiori Meguro, Isao Kosugi, Hideya Kawasaki, Hiroaki Katsura, Tomoyuki Fujisawa, Noriyuki Enomoto, Yutaro Nakamura, Naoki Inui, Takafumi Suda, Toshihide Iwashita

Abstract

Metformin, an AMP-activated protein kinase activator used to treat diabetes mellitus, has recently attracted attention as a promising anti-fibrotic agent. However, its anti-fibrotic effects on pleural fibroelastosis remain unknown. We induced mouse pleural fibroelastosis by intra-pleural coadministration of bleomycin and carbon and evaluated its validity as a preclinical model for human pleural fibrosis. We assessed the expression of the myofibroblast surface marker CD90 in the fibrotic pleura and the effects of metformin in vivo and in vitro. Finally, we evaluated the effects of metformin on human pleural mesothelial cells stimulated by transforming growth factor β1 (TGFβ1). The fibrotic pleura in mice had collagen and elastin fiber deposition similar to that seen in human fibrotic pleura. Moreover, CD90-positive myofibroblasts were detected in and successfully isolated from the fibrotic pleura. Metformin significantly suppressed the deposition of collagen and elastic fibers in the fibrotic pleura and decreased the expression of extracellular matrix (ECM)-related genes, including Col1a1, Col3a1, Fn1, and Eln, in pleural CD90-positive myofibroblasts. In human pleural mesothelial cells, metformin decreased TGFβ1-induced upregulation of ECM-related genes and SNAI1. Overall, metformin suppresses pleural fibroelastosis by inhibition of ECM production by pleural myofibroblasts, suggesting that this drug has therapeutic potential against human pleural fibrosis, including pleuroparenchymal fibroelastosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。