Effects off hydrogenated vegetable oil (HVO) and HVO/biodiesel blends on the physicochemical and toxicological properties of emissions from an off-road heavy-duty diesel engine

氢化植物油 (HVO) 和 HVO/生物柴油混合物对非道路重型柴油发动机排放的物理化学和毒理学特性的影响

阅读:7
作者:Cavan McCaffery, Hanwei Zhu, C M Sabbir Ahmed, Alexa Canchola, Jin Y Chen, Chengguo Li, Kent C Johnson, Thomas D Durbin, Ying-Hsuan Lin, Georgios Karavalakis

Abstract

In this study, the regulated emissions, gaseous toxics, and the physical, chemical, and toxicological properties of particulate matter (PM) emissions from a legacy off-road diesel engine operated on hydrogenated vegetable oil (HVO) and HVO blends with biodiesel were investigated. This is one of the very few studies currently available examining the emissions and potential health effects of HVO and its blends with biodiesel from diesel engines. Extended testing was conducted over the nonroad transient cycle (NRTC) and the 5-mode D2 ISO 8718 cycle. Nitrogen oxide (NOx) emissions showed statistically significant reductions for HVO compared to diesel, whereas the biodiesel blends statistically significant increases in NOx emissions. PM and solid particle number reductions with pure HVO and the biodiesel blends were also observed. Low-molecular weight polycyclic aromatic hydrocarbons (PAHs) were the dominant species in the exhaust for all fuels, with pure HVO and the biodiesel blends showing lower concentrations of these pollutants compared to diesel fuel. Our results showed that the oxidative stress and cytotoxicity in PM emissions decreased with the use of biofuels. Notable correlations were observed between PM emissions and oxidative stress and cytotoxicity, especially elemental carbon and particle-phase PAH emissions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。