Correlation of local effects of DNA sequence and position of β-alanine inserts with polyamide-DNA complex binding affinities and kinetics

DNA 序列和 β-丙氨酸插入物位置的局部效应与聚酰胺-DNA 复合物结合亲和力和动力学的相关性

阅读:7
作者:Shuo Wang, Rupesh Nanjunda, Karl Aston, James K Bashkin, W David Wilson

Abstract

To improve our understanding of the effects of β-alanine (β) substitution and the number of heterocycles on DNA binding affinity and selectivity, we investigated the interactions of an eight-ring hairpin polyamide (PA) and two β derivatives as well as a six-heterocycle analogue with their cognate DNA sequence, 5'-TGGCTT-3'. Binding selectivity and the effects of β have been investigated with the cognate and five mutant DNAs. A set of powerful and complementary methods have been employed for both energetic and structural evaluations: UV melting, biosensor surface plasmon resonance, isothermal titration calorimetry, circular dichroism, and a DNA ligation ladder global structure assay. The reduced number of heterocycles in the six-ring PA weakens the binding affinity; however, the smaller PA aggregates significantly less than the larger PAs and allows us to obtain the binding thermodynamics. The PA-DNA binding enthalpy is large and negative with a large negative ΔC(p) and is the primary driving component of the Gibbs free energy. The complete SPR binding results clearly show that β substitutions can substantially weaken the binding affinity of hairpin PAs in a position-dependent manner. More importantly, the changes in the binding of PA to the mutant DNAs further confirm the position-dependent effects on the PA-DNA interaction affinity. Comparison of mutant DNA sequences also shows a different effect in recognition of T·A versus A·T base pairs. The effects of DNA mutations on binding of a single PA as well as the effects of the position of β substitution on binding tell a clear and very important story about sequence-dependent binding of PAs to DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。