ADP receptor P2Y(13) induce apoptosis in pancreatic beta-cells

ADP受体P2Y(13)诱导胰腺β细胞凋亡

阅读:8
作者:Chanyuan Tan, Albert Salehi, Siv Svensson, Björn Olde, David Erlinge

Abstract

Pancreatic beta-cell loss represents a key factor in the pathogenesis of diabetes. Since the influence of purinergic signaling in beta-cell apoptosis has not been much investigated, we examined the role of the ADP receptor P2Y(13) using the pancreatic insulinoma-cell line MIN6c4 as a model system. Real time-PCR revealed high expression of the ADP receptors P2Y(1) and P2Y(13). Adding the ADP analogue, 2MeSADP, to MIN6c4 cells induced calcium influx/mobilization and inhibition of cAMP production by activation of P2Y(1) and P2Y(13), respectively. 2MeSADP reduced cell proliferation and increased Caspase-3 activity; both these effects could be fully reversed by the P2Y(13) receptor antagonist MRS2211. We further discovered that blocking the P2Y(13) receptor results in enhanced ERK1/2, Akt/PKB and CREB phosphorylation mechanisms involved in beta-cell survival. These results indicate that P2Y(13) is a proapoptotic receptor in beta-cells as the P2Y(13) receptor antagonist MRS2211 is able to protect the cells from ADP induced apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。