The Meta-Substituted Isomer of TMPyP Enables More Effective Photodynamic Bacterial Inactivation than Para-TMPyP In Vitro

TMPyP 的间位取代异构体比对位 TMPyP 在体外具有更有效的光动力细菌灭活作用

阅读:6
作者:Sebastian Schulz, Svitlana Ziganshyna, Norman Lippmann, Sarah Glass, Volker Eulenburg, Natalia Habermann, Ulrich T Schwarz, Alexander Voigt, Claudia Heilmann, Tobias Rüffer, Robert Werdehausen

Abstract

Porphyrinoid-based photodynamic inactivation (PDI) provides a promising approach to treating multidrug-resistant infections. However, available agents for PDI still have optimization potential with regard to effectiveness, toxicology, chemical stability, and solubility. The currently available photosensitizer TMPyP is provided with a para substitution pattern (para-TMPyP) of the pyridinium groups and has been demonstrated to be effective for PDI of multidrug-resistant bacteria. To further improve its properties, we synthetized a structural variant of TMPyP with an isomeric substitution pattern in a meta configuration (meta-TMPyP), confirmed the correct structure by crystallographic analysis and performed a characterization with NMR-, UV/Vis-, and IR spectroscopy, photostability, and singlet oxygen generation assay. Meta-TMPyP had a hypochromic shift in absorbance (4 nm) with a 55% higher extinction coefficient and slightly improved photostability (+6.9%) compared to para-TMPyP. Despite these superior molecular properties, singlet oxygen generation was increased by only 5.4%. In contrast, PDI, based on meta-TMPyP, reduced the density of extended spectrum β-lactamase-producing and fluoroquinolone-resistant Escherichia coli by several orders of magnitude, whereby a sterilizing effect was observed after 48 min of illumination, while para-TMPyP was less effective (p < 0.01). These findings demonstrate that structural modification with meta substitution increases antibacterial properties of TMPyP in PDI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。