Identification of Differentially Expressed Genes Reveal Conserved Mechanisms in the Rice- Magnaporthe oryzae Interaction

差异表达基因的鉴定揭示了水稻与稻瘟病菌相互作用中的保守机制

阅读:7
作者:Dong Liang, Zhongqiang Qi, Yan Du, Junjie Yu, Mina Yu, Rongsheng Zhang, Huijuan Cao, Xiayan Pan, Junqing Qiao, Tianqiao Song, Youzhou Liu, Zhiyi Chen, Yongfeng Liu

Abstract

Magnaporthe oryzae causes rice blast disease and is responsible for major losses in rice production worldwide. Although numerous studies have focused on the interactions between Oryza sativa and M. oryzae, to date, the conserved mechanisms remain in part unclear. In this study, a comparative analysis of transcriptomes of O. sativa L. ssp. japonica cv. 'Nipponbare' interacting with three M. oryzae strains (248, 235, and 163) were performed to explore the conserved molecular mechanisms. Differentially expressed genes with similar expression patterns in the interactions between cultivar 'Nipponbare' and three M. oryzae strains were defined as Conserved Differentially Expressed Genes (CDEGs). These included 3,647 O. sativa CDEGs and 3,655 M. oryzae CDEGs. Four rice CDEGs (LOC_Os03g19270, LOC_Os07g36600, LOC_Os05g28740, and LOC_Os01g32780) encoding universal stress protein (USP) were induced within 24 h post-inoculation (hpi) by three M. oryzae strains. Meanwhile, overexpression of LOC_Os07g36600 resulted in enhanced rice resistance against M. oryzae. Furthermore, four rice genes coding light-harvesting chlorophyll a/b-binding (LHC) protein (LOC_Os02g52650, LOC_Os09g12540, LOC_Os11g13850, LOC_Os05g22730) were also identified as CDEGs and were induced at 48 hpi, which might contribute to blast resistance through reactive oxygen species (ROS) accumulation. MoCDIP4 is M. oryzae effector inducing rice cell death and were verified that include AA9 CAZy domain (namely GH61 domain). In this study, we found seven MoCDIP4-homologous genes coding proteins with signal peptides and AA9 CAZy domains, which were continuously up-regulated across all infection stages relative to uninoculated control. This study uncovered that genes are required for conserved mechanisms of rice-M. oryzae interaction, which includes rice genes encoding USP proteins and LHC proteins, as well as M. oryzae genes encoding AA9 proteins. This study will help us to understand how O. sativa responds to M. oryzae infections and the molecular mechanisms of M. oryzae pathogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。