Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material

对肺炎克雷伯菌进行标记标记诱变,以鉴定影响细胞外基质材料上生物膜形成的基因

阅读:6
作者:Jennifer D Boddicker, Rebecca A Anderson, Jennifer Jagnow, Steven Clegg

Abstract

Klebsiella pneumoniae causes urinary tract infections, respiratory tract infections, and septicemia in susceptible individuals. Strains of Klebsiella frequently produce extended-spectrum beta-lactamases, and infections with these strains can lead to relatively high mortality rates (approximately 15%). Other virulence factors include production of an antiphagocytic capsule and outer membrane lipopolysaccharide (LPS), which mediates serum resistance, as well as fimbriae on the surface of the bacteria. Type 1 fimbriae mediate adherence to many types of epithelial cells and may facilitate adherence of the bacteria to the bladder epithelium. Type 3 fimbriae can bind in vitro to the extracellular matrix of urinary and respiratory tissues, suggesting that they mediate binding to damaged epithelial surfaces. In addition, type 3 fimbriae are required for biofilm formation by Klebsiella pneumoniae on plastics and human extracellular matrix; thus, they may facilitate the formation of treatment-resistant biofilm on indwelling plastic devices, such as catheters and endotracheal tubing. The presence of these devices may cause tissue damage, allowing Klebsiella to grow as a biofilm on exposed tissue basement membrane components. Though in vivo biofilm growth may be an important step in the infection process, little is known about the genetic factors required for biofilm formation by Klebsiella pneumoniae. Thus, we performed signature-tagged mutagenesis to identify factors produced by K. pneumoniae strain 43816 that are required for biofilm formation. We identified mutations in the cps capsule gene cluster, previously unidentified transcriptional regulators, fimbrial, and sugar phosphotransferase homologues, as well as genetic loci of unknown function, that affect biofilm formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。