Fickian-Based Empirical Approach for Diffusivity Determination in Hollow Alginate-Based Microfibers Using 2D Fluorescence Microscopy and Comparison with Theoretical Predictions

基于 Fickian 的经验方法,使用二维荧光显微镜测定中空海藻酸盐微纤维中的扩散率并与理论预测进行比较

阅读:5
作者:Maryam Mobed-Miremadi, Sabra Djomehri, Mallika Keralapura, Melanie McNeil

Abstract

Hollow alginate microfibers (od = 1.3 mm, id = 0.9 mm, th = 400 µm, L = 3.5 cm) comprised of 2% (w/v) medium molecular weight alginate cross-linked with 0.9 M CaCl&sub2; were fabricated to model outward diffusion capture by 2D fluorescent microscopy. A two-fold comparison of diffusivity determination based on real-time diffusion of Fluorescein isothiocyanate molecular weight (FITC MW) markers was conducted using a proposed Fickian-based approach in conjunction with a previously established numerical model developed based on spectrophotometric data. Computed empirical/numerical (Dempiricial/Dnumerical) diffusivities characterized by small standard deviations for the 4-, 70- and 500-kDa markers expressed in m²/s are (1.06 × 10-9 ± 1.96 × 10-10)/(2.03 × 10-11), (5.89 × 10-11 ± 2.83 × 10-12)/(4.6 × 10-12) and (4.89 × 10-12 ± 3.94 × 10-13)/(1.27 × 10-12), respectively, with the discrimination between the computation techniques narrowing down as a function of MW. The use of the numerical approach is recommended for fluorescence-based measurements as the standard computational method for effective diffusivity determination until capture rates (minimum 12 fps for the 4-kDa marker) and the use of linear instead of polynomial interpolating functions to model temporal intensity gradients have been proven to minimize the extent of systematic errors associated with the proposed empirical method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。