Metabolic engineering of Thermoanaerobacterium AK17 for increased ethanol production in seaweed hydrolysate

嗜热厌氧杆菌 AK17 的代谢工程可提高海藻水解液中的乙醇产量

阅读:5
作者:Antoine Moenaert, Bryndís Bjornsdottir, Einar Baldvin Haraldsson, Leila Allahgholi, Anna Zieri, Isabella Zangl, Sigríður Sigurðardóttir, Jóhann Örlygsson, Eva Nordberg Karlsson, Ólafur H Friðjónsson, Guðmundur Óli Hreggviðsson

Abstract

Sustainably produced renewable biomass has the potential to replace fossil-based feedstocks, for generation of biobased fuels and chemicals of industrial interest, in biorefineries. In this context, seaweeds contain a large fraction of carbohydrates that are a promising source for enzymatic and/or microbial biorefinery conversions. The thermoanaerobe Thermoanaerobacterium AK17 is a versatile fermentative bacterium producing ethanol, acetate and lactate from various sugars. In this study, strain AK17 was engineered for more efficient production of ethanol by knocking out the lactate and acetate side-product pathways. This was successfully achieved, but the strain reverted to acetate production by recruiting enzymes from the butyrate pathway. Subsequently this pathway was knocked out and the resultant strain AK17_M6 could produce ethanol close to the maximum theoretical yield (90%), leading to a 1.5-fold increase in production compared to the wild-type strain. Strain AK17 was also shown to successfully ferment brown seaweed hydrolysate from Laminaria digitata to ethanol in a comparatively high yield of 0.45 g/g substrate, with the primary carbon sources for the fermentations being mannitol, laminarin-derived glucose and short laminari-oligosaccharides. As strain AK17 was successfully engineered and has a wide carbohydrate utilization range that includes mannitol from brown seaweed, as well as hexoses and pentoses found in both seaweeds and lignocellulose, the new strain AK17_M6 obtained in this study is an interesting candidate for production of ethanol from both second and third generations biomass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。