Screening of compounds to identify novel epigenetic regulatory factors that affect innate immune memory in macrophages

筛选化合物以确定影响巨噬细胞先天免疫记忆的新型表观遗传调控因子

阅读:5
作者:Salisa Benjaskulluecha, Atsadang Boonmee, Thitiporn Pattarakankul, Benjawan Wongprom, Jeerameth Klomsing, Tanapat Palaga

Abstract

Trained immunity and tolerance are part of the innate immune memory that allow innate immune cells to differentially respond to a second encounter with stimuli by enhancing or suppressing responses. In trained immunity, treatment of macrophages with β-glucan (BG) facilitates the production of proinflammatory cytokines upon lipopolysaccharide (LPS) stimulation. For the tolerance response, LPS stimulation leads to suppressed inflammatory responses during subsequent LPS exposure. Epigenetic reprogramming plays crucial roles in both phenomena, which are tightly associated with metabolic flux. In this study, we performed a screening of an epigenetics compound library that affects trained immunity or LPS tolerance in macrophages using TNFα as a readout. Among the 181 compounds tested, one compound showed suppressive effects, while 2 compounds showed promoting effects on BG-trained TNFα production. In contrast, various inhibitors targeting Aurora kinase, histone methyltransferase, histone demethylase, histone deacetylase and DNA methyltransferase showed inhibitory activity against LPS tolerance. Several proteins previously unknown to be involved in innate immune memory, such as MGMT, Aurora kinase, LSD1 and PRMT5, were revealed. Protein network analysis revealed that the trained immunity targets are linked via Trp53, while LPS tolerance targets form three clusters of histone-modifying enzymes, cell division and base-excision repair. In trained immunity, the histone lysine methyltransferase SETD7 was identified, and its expression was increased during BG treatment. Level of the histone lysine demethylase, LSD1, increased during LPS priming and siRNA-mediated reduction resulted in increased expression of Il1b in LPS tolerance. Taken together, this screening approach confirmed the importance of epigenetic modifications in innate immune memory and provided potential novel targets for intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。