Dichotomic role of heparanase in a murine model of metabolic syndrome

肝素酶在小鼠代谢综合征模型中的二分作用

阅读:5
作者:Esther Hermano #, Françoise Carlotti #, Alexia Abecassis #, Amichay Meirovitz, Ariel M Rubinstein, Jin-Ping Li, Israel Vlodavsky, Ton J Rabelink, Michael Elkin

Abstract

Heparanase is the predominant enzyme that cleaves heparan sulfate, the main polysaccharide in the extracellular matrix. While the role of heparanase in sustaining the pathology of autoimmune diabetes is well documented, its association with metabolic syndrome/type 2 diabetes attracted less attention. Our research was undertaken to elucidate the significance of heparanase in impaired glucose metabolism in metabolic syndrome and early type 2 diabetes. Here, we report that heparanase exerts opposite effects in insulin-producing (i.e., islets) vs. insulin-target (i.e., skeletal muscle) compartments, sustaining or hampering proper regulation of glucose homeostasis depending on the site of action. We observed that the enzyme promotes macrophage infiltration into islets in a murine model of metabolic syndrome, and fosters β-cell-damaging properties of macrophages activated in vitro by components of diabetogenic/obese milieu (i.e., fatty acids). On the other hand, in skeletal muscle (prototypic insulin-target tissue), heparanase is essential to ensure insulin sensitivity. Thus, despite a deleterious effect of heparanase on macrophage infiltration in islets, the enzyme appears to have beneficial role in glucose homeostasis in metabolic syndrome. The dichotomic action of the enzyme in the maintenance of glycemic control should be taken into account when considering heparanase-targeting strategies for the treatment of diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。