Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster

果蝇两种适应原系统和耐热性的年龄依赖性表达谱

阅读:7
作者:V Shilova, O Zatsepina, A Zakluta, D Karpov, L Chuvakova, D Garbuz, M Evgen'ev

Abstract

Here, we monitored the expression of three genes (hsp70, hsp22, and hsf1) involved in heat shock response in Drosophila melanogaster in males and females of different age. Also, we investigated age- and sex-dependent expression of three major genes participating in the production of hydrogen sulfide (H2S) (cse, cbs, and mst), implicated in stress resistance and aging. In addition to the control strain, we monitored the expression of all of these genes in a cbs knockout strain (cbs-/-) generated using the CRISPR technique. The tested strains differ in the induction capacities of the studied genes. Relative to the control strain, under normal conditions, the cbs-/- strain expresses all of the studied genes more abundantly, especially hsp22. In the control strain, aging leads to a dramatic increase in hsp22 synthesis, whereas in the cbs-/- strain, hsp22 induction is not pronounced. Furthermore, in 30-day-old cbs-/- flies, the constitutive expression of hsp70 and mst is decreased. Surprisingly, in the cbs-/- strain, we detected an upregulation of hsf1 transcription in the 30-day-old females. After heat shock in the control strain, hsp70 and hsp22 induction decreased with age in males and hsp22 decreased in females, while in the cbs-/- strain, a pronounced drop in the induction capacity of both hsp genes was seen in 30-day-old males and females. However, in most cases, the expression levels of hsf1 and H2S-producing genes do not exhibit pronounced changes depending on sex, age, or heat shock. Flies of control and cbs-/- strain exhibited strong reduction in basal thermotolerance with age. Our data suggest a cross-talk between the two studied ancient and universal adaptive systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。