C3aR and C5aR1 act as key regulators of human and mouse β-cell function

C3aR 和 C5aR1 是人类和小鼠 β 细胞功能的关键调节剂

阅读:4
作者:Patricio Atanes, Inmaculada Ruz-Maldonado, Attilio Pingitore, Ross Hawkes, Bo Liu, Min Zhao, Guo Cai Huang, Shanta J Persaud, Stefan Amisten

Aims

Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. Materials and

Conclusions

Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.

Methods

Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca2+]i), ATP generation and apoptosis were assessed by standard techniques.

Results

C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca2+]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. Conclusions: Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。