Abstract
The pharmacological modulation of hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. Although it is assumed that prostaglandin E(2) (PGE(2)) exerts its biological effects from the extracellular medium through activation of EP receptors located at the cell membrane, we have shown in human renal proximal tubular HK-2 cells (and other cell lines) that intracellular PGE(2) regulates the expression of HIF-1α expression and the production of VEGF-A. Here, we have found--through experiments involving EP receptors agonists, EP receptor gene silencing and inhibition of the prostaglandin uptake transporter--that these biological effects of PGE(2) are mediated by intracellular EP(2) receptors. In sharp contrast with cell membrane EP(2), whose activation results in increased production of cAMP, intracellular EP(2) signaling was independent of cAMP. Instead, it involved c-src-dependent transactivation of epidermal growth factor receptor, which led to p38/ERK1/2-dependent activation of mitogen- and stress-activated kinase-1 (MSK-1) and to MSK-1-dependent-histone H3 phosphorylation and transcriptional up-regulation of retinoic acid receptor-β. Even more important, this signaling pathway was fully reproduced in nuclei isolated from HK-2 cell, which highlights the relevance of nuclear EP receptors in the up-regulation of HIF-1α. These results open the possibility that signal cascades that proceed entirely in the cell nucleus might be responsible for several PGE(2) effects that are assumed to be due to cell membrane EP receptors.
