Soluble Extracts from Chia Seed (Salvia hispanica L.) Affect Brush Border Membrane Functionality, Morphology and Intestinal Bacterial Populations In Vivo (Gallus gallus)

奇亚籽(Salvia hispanica L.)的可溶性提取物影响体内刷状缘膜的功能、形态和肠道细菌群(Gallus gallus)

阅读:4
作者:Bárbara Pereira da Silva, Nikolai Kolba, Hércia Stampini Duarte Martino, Jonathan Hart, Elad Tako

Abstract

This study assessed and compared the effects of the intra-amniotic administration of various concentrations of soluble extracts from chia seed (Salvia hispanica L.) on the Fe and Zn status, brush border membrane functionality, intestinal morphology, and intestinal bacterial populations, in vivo. The hypothesis was that chia seed soluble extracts will affect the intestinal morphology, functionality and intestinal bacterial populations. By using the Gallus gallus model and the intra-amniotic administration approach, seven treatment groups (non-injected, 18 Ω H2O, 40 mg/mL inulin, non-injected, 5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL of chia seed soluble extracts) were utilized. At hatch, the cecum, duodenum, liver, pectoral muscle and blood samples were collected for assessment of the relative abundance of the gut microflora, relative expression of Fe- and Zn-related genes and brush border membrane functionality and morphology, relative expression of lipids-related genes, glycogen, and hemoglobin levels, respectively. This study demonstrated that the intra-amniotic administration of chia seed soluble extracts increased (p < 0.05) the villus surface area, villus length, villus width and the number of goblet cells. Further, we observed an increase (p < 0.05) in zinc transporter 1 (ZnT1) and duodenal cytochrome b (Dcytb) proteins gene expression. Our results suggest that the dietary consumption of chia seeds may improve intestinal health and functionality and may indirectly improve iron and zinc intestinal absorption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。