A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data

整合多组学数据进行综合生物信息学分析探讨胶质瘤内质网应激相关预后标志物及潜在致病机制

阅读:4
作者:Xin Fan, Xiyi Nie, Junwen Huang, Lingling Zhang, Xifu Wang, Min Lu

Abstract

In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。