Enhanced methylene blue adsorption using single-walled carbon nanotubes/chitosan-graft-gelatin nanocomposite hydrogels

利用单壁碳纳米管/壳聚糖接枝明胶纳米复合水凝胶增强亚甲蓝吸附

阅读:5
作者:Bahareh Farasati Far, Mohammad Reza Naimi-Jamal, Mehdi Jahanbakhshi, Shadi Keihankhadiv, Farid Baradarbarjastehbaf

Abstract

In the present study, single-walled carbon nanotubes (SWCNTs) incorporating chitosan-graft-gelatin (CS-g-GEL/SWCNTs) hydrogels were fabricated with multiple advantages, including cost-effectiveness, high efficiency, biodegradability, and ease of separation for methylene blue (MB) dye from aqueous solution. To verify the successful formulation of the prepared hydrogels, various characterization methods such as NMR, FTIR, XRD, FE-SEM, TGA, BET, and EDX were employed. The removal efficiency of CS-g-GEL/SWCNTs nanocomposite hydrogel increased significantly to 98.87% when the SWCNTs percentage was increased to 20%. The highest adsorption was observed for pH = 9, an adsorbent dose = 1.5 g L-1, a temperature = 25 °C, a contact time = 60 min, and a contaminant concentration = 20 mg L-1. Based on the thermodynamic results, spontaneous adsorption occurred from a negative Gibbs free energy (ΔG°). In addition, the thermodynamic analysis of the adsorption process revealed an average enthalpy of - 21.869 kJ mol-1 for the adsorption process at a temperature range of 25-45 °C, which indicates its spontaneous and exothermic behavior. The Langmuir isotherm model was successfully used to describe the equilibrium behavior of adsorption. The pseudo-first-order model better described adsorption kinetics compared to the pseudo-second-order, intra-particle, and Elovich models. CS-g-GEL/SWCNTs hydrogels have improved reusability for five consecutive cycles, suggesting that they may be effective for removing anionic dyes from aquatic environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。