Maternal probiotic supplementation protects against PBDE-induced developmental, behavior and metabolic reprogramming in a sexually dimorphic manner: Role of gut microbiome

母体益生菌补充剂可防止 PBDE 引起的两性异形发育、行为和代谢重编程:肠道微生物组的作用

阅读:4
作者:Maximillian E Denys #, Elena V Kozlova #, Rui Liu, Anthony E Bishay, Elyza A Do, Varadh Piamthai, Yash V Korde, Crystal N Luna, Artha A Lam, Ansel Hsiao, Margarita Currás-Collazo

Abstract

Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting persistent organic pollutants (POPs) used as flame retardants in a wide range of commercial applications. We have previously reported neurobehavioral and metabolic reprogramming produced by developmental PBDEs. PBDEs perturb the microbiome, an influencer of life-long health, while probiotic supplementation with Limosilactobacillus reuteri (LR) can avert neurobehavioral and endocrine disruption. We, therefore, tested the hypothesis that perinatal maternal LR supplementation would protect gut microbiome richness and diversity, developmental milestones, adult neurobehavior and metabolic homeostasis in PBDE-exposed offspring. C57BL/6N dams were orally exposed to a commercial penta-mixture of PBDEs, DE-71, at 0.1 mg/kg/day, or corn oil vehicle (VEH/CON) during gestation and lactation. Mice offspring received DE-71 or VEH/CON with or without co-administration of LR (ATCC-PTA-6475) indirectly via their mother from gestational day (GD) 0 until postnatal day (P)21 (Cohort 1), or continued to receive LR directly from P22 through adulthood (Cohort 2). Results of fecal 16S rRNA sequencing indicated age- and sex-dependent effects of DE-71 on gut microbial communities. Maternal LR treatment protected against DE-71-induced reduction in α-diversity in P22 females and against β-diversity alterations in P30 males. In females, DE-71 changed the relative abundance of specific bacterial taxa, such as Tenericutes and Cyanobacteria (elevated) and Deferribacterota (reduced). In males, several Firmicutes taxa were elevated, while Proteobacteria, Chlamydiae, and several Bacteroidota taxa were reduced. The number of disrupted taxa normalized by maternal LR supplementation was as follows: 100% in P22 females and 33% in males at P22 and 25% at P30. Maternal LR treatment protected against DE-71-induced delay of postnatal body weight gain in males and ameliorated the abnormal timing of incisor eruption in both sexes. Further, DE-71 produced exaggerated digging in both sexes as well as locomotor hyperactivity in females, effects that were mitigated by maternal LR only in females. Other benefits of LR therapy included normalization of glucose tolerance, insulin-to-glucose ratio and plasma leptin in adult DE-71 females (Cohort 2). This study provides evidence that probiotic supplementation can mitigate POP-induced reprogramming of neurodevelopment, adult neurobehavior, and glucose metabolism in association with modified gut microbial community structure in a sex-dependent manner.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。