Biological Effects of HDAC Inhibitors Vary with Zinc Binding Group: Differential Effects on Zinc Bioavailability, ROS Production, and R175H p53 Mutant Protein Reactivation

HDAC 抑制剂的生物学效应因锌结合基团的不同而不同:对锌生物利用度、ROS 生成和 R175H p53 突变蛋白再激活的不同影响

阅读:4
作者:Brianna M Flores, Chandana K Uppalapati, Agnes S Pascual, Alan Vong, Margaux A Baatz, Alisha M Harrison, Kathryn J Leyva, Elizabeth E Hull

Abstract

The coordination of zinc by histone deacetylase inhibitors (HDACi), altering the bioavailability of zinc to histone deacetylases (HDACs), is key to HDAC enzyme inhibition. However, the ability of zinc binding groups (ZBGs) to alter intracellular free Zn+2 levels, which may have far-reaching effects, has not been explored. Using two HDACis with different ZBGs, we documented shifts in intracellular free Zn+2 concentrations that correlate with subsequent ROS production. Next, we assayed refolding and reactivation of the R175H mutant p53 protein in vitro to provide greater biological context as the activity of this mutant depends on cellular zinc concentration. The data presented demonstrates the differential activity of HDACi in promoting R175H response element (RE) binding. After cells are treated with HDACi, there are differences in R175H mutant p53 refolding and reactivation, which may be related to treatments. Collectively, we show that HDACis with distinct ZBGs differentially impact the intracellular free Zn+2 concentration, ROS levels, and activity of R175H; therefore, HDACis may have significant activity independent of their ability to alter acetylation levels. Our results suggest a framework for reevaluating the role of zinc in the variable or off-target effects of HDACi, suggesting that the ZBGs of HDAC inhibitors may provide bioavailable zinc without the toxicity associated with zinc metallochaperones such as ZMC1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。