Photocatalytic degradation of tetracycline antibiotics by RGO-CdTe composite with enhanced apparent quantum efficiency

RGO-CdTe复合材料光催化降解四环素类抗生素并提高表观量子效率

阅读:9
作者:Suvendu Ghosh, Koushik Chakraborty, Tanusri Pal, Surajit Ghosh

Abstract

RGO-CdTe composite was synthesized using a straightforward, easy-to-realize, one-pot solvothermal technique. The synthesized composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller method (BET), Raman spectra, UV-Vis absorption, and photoluminescence measurement. The RGO-CdTe composite exhibited 83.6% photocatalytic degradation efficiency for the aqueous tetracycline (TC) antibiotic solution and the apparent quantum yield (AQY) for the same was as high as 22.29% which is 2.63 times higher than that of CdTe. The scavenger investigation demonstrated that although hole acts as the leading active species, despite that, superoxide and hydroxyl radicals have also played crucial roles. The initial pH-dependent photocatalytic performance was measured. The zeta potential of the composite at different pH values was evaluated to establish the photocatalytic performance of the RGO-CdTe towards TC degradation at different pH. The recycling experiment depicts that only a 10% degradation performance declines after 5 times recycle use of the RGO-CdTe photocatalyst. An efficient photocurrent generation in RGO-CdTe thin film device has also been observed. Our study establishes as-synthesized composite of RGO-CdTe as a highly potential, and stable photocatalyst for the degradation of antibiotics from the polluted aqueous environment with a very good photoinduced charge generation efficiency in its solid phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。