Gemtuzumab Ozogamicin (GO) Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia

吉妥珠单抗奥佐米星 (GO) 加入诱导化疗可消除白血病起始细胞并显著提高急性髓系白血病小鼠模型的生存率

阅读:7
作者:Cathy C Zhang, Zhengming Yan, Bernadette Pascual, Amy Jackson-Fisher, Donghui Stephen Huang, Qing Zong, Mark Elliott, Conglin Fan, Nanni Huser, Joseph Lee, Matthew Sung, Puja Sapra

Abstract

Gemtuzumab ozogamicin (GO) is an anti-CD33 antibody-drug conjugate for the treatment of acute myeloid leukemia (AML). Although GO shows a narrow therapeutic window in early clinical studies, recent reports detailing a modified dosing regimen of GO can be safely combined with induction chemotherapy, and the combination provides significant survival benefits in AML patients. Here we tested whether the survival benefits seen with the combination arise from the enhanced reduction of chemoresidual disease and leukemic initiating cells (LICs). Herein, we use cell line and patient-derived xenograft (PDX) AML models to evaluate the combination of GO with daunorubicin and cytarabine (DA) induction chemotherapy on AML blast growth and animal survival. DA chemotherapy and GO as separate treatments reduced AML burden but left significant chemoresidual disease in multiple AML models. The combination of GO and DA chemotherapy eliminated nearly all AML burden and extended overall survival. In two small subsets of AML models, chemoresidual disease following DA chemotherapy displayed hallmark markers of leukemic LICs (CLL1 and CD34). In vivo, the two chemoresistant subpopulations (CLL1+/CD117- and CD34+/CD38+) showed higher ability to self-renewal than their counterpart subpopulations, respectively. CD33 was coexpressed in these functional LIC subpopulations. We demonstrate that the GO and DA induction chemotherapy combination more effectively eliminates LICs in AML PDX models than either single agent alone. These data suggest that the survival benefit seen by the combination of GO and induction chemotherapy, nonclinically and clinically, may be attributed to the enhanced reduction of LICs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。