Antarctic aldehyde dehydrogenase from Flavobacterium PL002 as a potent catalyst for acetaldehyde determination in wine

来自黄杆菌 PL002 的南极醛脱氢酶可作为葡萄酒中乙醛测定的强效催化剂

阅读:5
作者:V I Paun #, R M Banciu #, P Lavin, A Vasilescu, P Fanjul-Bolado, C Purcarea

Abstract

Latest solutions in biotechnologies and biosensing targeted cold-active extremozymes. Analysis of acetaldehyde as a relevant quality indicator of wine is one example of application that could benefit from using low-temperatures operating catalysts. In search of novel aldehyde dehydrogenases (ALDH) with high stability and activity at low temperatures, the recombinant S2-ALDH from the Antarctic Flavobacterium PL002 was obtained by cloning and expression in Escherichia coli BL21(DE3). Structural and phylogenetic analyses revealed strong protein similarities (95%) with psychrophilic homologs, conserved active residues and structural elements conferring enzyme flexibility. Arrhenius plot revealed a conformational shift at 30 °C, favoring catalysis (low activation energy) at lower temperatures. In addition to a broad substrate specificity with preference for acetaldehyde (Km = 1.88 mM), this enzyme showed a high tolerance for ethanol (15%) and several salts and chelators (an advantage for wine analysis), while being sensitive to mercury (I50 = 1.21 µM). The neutral optimal pH (7.5) and the stability up to 40 °C and after lyophilization represent major assets for developing S2-ALDH-based sensors. An enzymatic electrochemical assay was developed for acetaldehyde detection in wines with proven accuracy in comparison with the reference spectrophotometric method, thus evidencing the potential of S2-ALDH as effective biocatalyst for industry and biosensing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。