Pterostilbene Attenuates High-Intensity Swimming Exercise-Induced Glucose Absorption Dysfunction Associated with the Inhibition of NLRP3 Inflammasome-Induced IECs Pyroptosis

紫檀芪可减轻高强度游泳运动引起的葡萄糖吸收功能障碍,而这种障碍与抑制 NLRP3 炎症小体引起的 IEC 细胞焦亡有关

阅读:7
作者:Lin Zheng, Pengfei Hou, Jinjin Jing, Min Zhou, Le Wang, Luting Wu, Jundong Zhu, Long Yi, Mantian Mi

Abstract

The study investigated the effect of pterostilbene (PTE) on intestinal glucose absorption and its underlying mechanisms in high-intensity swimming exercise (HISE)-treated mice. Male C57BL/6 mice were treated with PTE for 4 weeks and performed high-intensity swimming training in the last week. Intestinal epithelial cells (IECs) were pretreated with 0.5 and 1.0 μM PTE for 24 h before being incubated in hypoxia/reoxygenation condition. Intestinal glucose absorption was detected by using an oral glucose tolerance test and d-xylose absorption assay, and the levels of factors related to mitochondrial function and pyroptosis were measured via western blot analyses, cell mito stress test, and quantitative real-time polymerase chain reaction. In vivo and in vitro, the results showed that PTE attenuated HISE-induced intestinal glucose absorption dysfunction and pyroptosis in mice intestine. Moreover, PTE inhibited NLRP3 inflammasome and the mitochondrial homeostasis as well as the ROS accumulation in IEC in vitro. Additionally, knockdown of SIRT3, a major regulator of mitochondria function, by siRNA or inhibiting its activity by 3-TYP abolished the effects of PTE on pyroptosis, mitochondrial homeostasis, and ROS generation of IEC in vitro. Our results revealed that PTE could alleviate HISE-induced intestinal glucose absorption dysfunction associated with the inhibition of NLRP3 inflammasome-induced IECs pyroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。