Class I PI3Ks activate stretch-induced autophagy in trabecular meshwork cells

类 PI3K 激活小梁网细胞中拉伸诱导的自噬

阅读:8
作者:Myoung Sup Shim, Ethan J Sim, Kevin Betsch, Vaibhav Desikan, Chien-Chia Su, Diego Pastor-Valverde, Yang Sun, Paloma B Liton

Abstract

Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, a leading cause of irreversible blindness worldwide. IOP homeostasis is maintained through a balance between aqueous humor production and its drainage through the trabecular meshwork (TM)/Schlemm's Canal (SC) outflow pathway. Prior studies by our laboratory reported a key role of mechanical forces and primary cilia (PC)-dependent stretch-induced autophagy in IOP homeostasis. However, the precise mechanism regulating this process remains elusive. In this study, we investigated the upstream signaling pathway orchestrating autophagy activation during cyclic mechanical stretch (CMS) in primary cultured human TM cells, using biochemical and cell biological analyses. Our results indicate that TM cells express catalytic subunits of class IA PI3Ks (PIK3CA, B, and D), and that inhibition of class IA isoforms, but not class II and III, significantly prevent CMS-induced autophagy. Importantly, PIK3CA was found to localize in the PC. Furthermore, we identified a coordinated action of Class IA PI3Ks along INPP4A/B, a 4' inositol phosphatase, responsible for the formation of PI(3,4)P2 and PI(3)P and stretch-induced autophagy in TM cells. These findings contribute to a deeper understanding of the molecular mechanisms underlying IOP homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。