Zinc induces caspase-dependent mitochondrial pathway of the programmed cell death in haemocytes of Drosophila melanogaster

锌诱导果蝇血细胞程序性细胞死亡的胱天蛋白酶依赖性线粒体途径

阅读:3
作者:Marta Filipiak, Grzegorz Tylko, Elzbieta Pyza

Abstract

Zinc is an essential trace element in cells. However, its high level in cytoplasm promotes activation of stress signaling pathways and may lead to cell death. In the present study we used Drosophila melanogaster blood cells (haemocytes), obtained from the third instar larvae, to study the effects of high concentrations of Zn(2+) on programmed cell death (PCD). We analyzed the activity of caspases, the level of caspase inhibitor protein DIAP1 and metallothioneins, as well as calcium concentrations and activity of mitochondria in haemocytes exposed to 0.35 and 1.7 mM concentrations of Zn. The obtained results showed that rapid increase of [Zn(2+)]( i ) in the cytoplasm up-regulates metallothionein MtnB but not MtnA gene expression in cells treated with Zn(2+) in both concentrations. Excess of Zn(2+) also induced activation of the initiator caspase Dronc, associated with the mitochondrial pathway of PCD, and the effector caspase DrICE. In turn, the activity of receptor-regulated Dredd caspase was not changed. The level of DIAP1 decreased significantly in haemocytes in the presence of high Zn(2+) concentration in comparison to untreated cells. Moreover, mitochondrial membrane potential was significantly decreased after exposure to Zn ions. These results indicate that high concentration of Zn(2+) in the cytoplasm of haemocytes induces PCD via a mitochondrial pathway and that caspases play a pivotal role in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。