Rnf20 inhibition enhances immunotherapy by improving regulatory T cell generation

Rnf20 抑制可通过改善调节性 T 细胞生成来增强免疫疗法

阅读:4
作者:Xiangqian Luo #, Lihua Mo #, Xinxin Wang #, Shuang Zhang, Huazhen Liu, Gaohui Wu, Qinmiao Huang, Dabo Liu, Pingchang Yang

Background

Allergic disorders are common all over the world. The pathogenesis of allergy is unclear. Therapies for allergic disorders require improvement. Endoplasmic reticulum (ER) stress is one of the factors influencing immune response. The

Conclusions

ER stress can be detected in CD4+ T cells in TCR engagement. Exposure to MNP exacerbates ER stress in committed CD4+ T cells. Regulation of the ER stress-related Rnf20 expression can restore the generation of Treg from CD4+ T cells of subjects with allergic diseases.

Methods

Committed CD4+ T cells were isolated from blood samples collected from patients with allergic rhinitis (AR) and TCR ovalbumin transgenic mice. The effects of TCR engagement and 3-methyl-4-nitrophenol (MNP) on inducing ER stress in committed CD4+ T cells were evaluated.

Results

ER stress was detected in antigen-specific CD4+ T cells (sCD4+ T cells) of AR patients. The environmental pollutant MNP increased the expression of the X-binding protein-1 (XBP1) in the committed CD4+ T cells during the TCR engagement. XBP1 mediated the effects of MNP on inhibiting regulatory T cell (Treg) generation. The effects of MNP on induction of protein 20 (Rnf20) in CD4+ T cells were mediated by XBP1. Inhibition of Rnf20 rescued the Treg development from MNP-primed sCD4+ T cells. The ablation of Rnf20 improved the immunotherapy of AR through the restoration of the Treg generation. Conclusions: ER stress can be detected in CD4+ T cells in TCR engagement. Exposure to MNP exacerbates ER stress in committed CD4+ T cells. Regulation of the ER stress-related Rnf20 expression can restore the generation of Treg from CD4+ T cells of subjects with allergic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。