The aspartimide problem persists: Fluorenylmethyloxycarbonyl-solid-phase peptide synthesis (Fmoc-SPPS) chain termination due to formation of N-terminal piperazine-2,5-diones

天冬酰亚胺问题仍然存在:由于 N 端哌嗪-2,5-二酮的形成导致芴甲氧羰基固相肽合成 (Fmoc-SPPS) 链终止

阅读:6
作者:Daniel Samson, Daniel Rentsch, Marco Minuth, Thomas Meier, Günther Loidl

Abstract

Aspartimide (Asi) formation is a notorious side reaction in peptide synthesis that is well characterized and described in literature. In this context, we observed significant amounts of chain termination in Fmoc-SPPS while synthesizing the N-terminal Xaa-Asp-Yaa motif. This termination was caused by the formation of piperazine-2,5-diones. We investigated this side reaction using a linear model peptide and independently synthesizing its piperazine-2,5-dione derivative. Nuclear magnetic resonance (NMR) data of the side product present in the crude linear peptide proves that exclusively the six-membered ring is formed whereas the theoretically conceivable seven-membered 1,4-diazepine-2,5-dione is not found. We propose a mechanism where nucleophilic attack of the N-terminal amino function takes place at the α-carbon of the carbonyl group of the corresponding Asi intermediate. In addition, we systematically investigated the impact of (a) different adjacent amino acid residues, (b) backbone protection, and (c) side chain protection of flanking amino acids. The side reaction is directly related to the Asi intermediate. Hence, hindering or avoiding Asi formation reduces or completely suppresses this side reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。