Collagen-induced DDR1 upregulates CXCL5 to promote neutrophil extracellular traps formation and Treg infiltration in breast cancer

胶原诱导的 DDR1 上调 CXCL5 以促进乳腺癌中中性粒细胞胞外陷阱形成和 Treg 浸润

阅读:8
作者:Hong Li, Jiayi Li, Zhengyang Bai, Shuxun Yan, Jinping Li

Abstract

Neutrophil extracellular traps (NETs) have been implicated in many cancers, but the regulatory mechanisms in the context of breast cancer have not been thoroughly discussed. This study proposed a mechanism based on collagen-activated DDR1/CXCL5 for NET formation in breast cancer. Through TCGA and GEO-based bioinformatics analysis, we examined the DDR1 expression and the correlation of CXCL5 with immune cell infiltration in breast cancer. It was found that high DDR1 expression was correlated with poor prognosis of patients with breast cancer, and CXCL5 was positively correlated with neutrophil and Treg infiltration. Expression of DDR1 and CXCL5 was determined in collagen-treated breast cancer cells, the malignant phenotypes of which were evaluated by ectopic expression and knockdown methods. Collagen-activated DDR1 upregulated CXCL5 expression, resulting in augmented malignant phenotypes of breast cancer cells in vitro. The formation of NETs caused promotion in the differentiation and immune infiltration of Tregs in breast cancer. A in situ breast cancer mouse model was constructed, where NET formation and lung metastasis of breast cancer cells were observed. The differentiation of CD4+ T cells isolated from the mouse model was induced into Tregs, followed by Treg infiltration assessment. It was further confirmed in vivo that DDR1/CXCL5 induced the formation of NETs to promote immune infiltration of Tregs, driving tumor growth and metastasis. Accordingly, our results provided new mechanistic insights for an understanding of the role of collagen-mediated DDR1/CXCL5 in formation of NETs and Treg infiltration, revealing potential targets for therapeutic intervention of breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。