N-acetylcysteine Attenuates Cobalt Nanoparticle-Induced Cytotoxic Effects through Inhibition of Cell Death, Reactive Oxygen Species-related Signaling and Cytokines Expression

N-乙酰半胱氨酸通过抑制细胞死亡、活性氧相关信号和细胞因子表达减弱钴纳米粒子诱导的细胞毒作用

阅读:5
作者:Ya-Ke Liu, Hong-Wei Yang, Meng-Hong Wang, Wei Wang, Fan Liu, Hui-Lin Yang

Conclusions

These findings indicated that NAC could reverse CoNP-induced cytotoxicity by inhibiting ROS-induced cell death and cytokine expression. To our knowledge, this is the first report that describes how CoNP-induced cytotoxicity in TCMK-1 cells could be attenuated by anti-oxidative agents (NAC), which may function through inhibition of cell death and ROS.

Methods

After being pretreated with NAC, TCMK-1 cells were treated with 300-700 μmol/L CoNPs, then, CCK-8 assay was used to verify the survival of TCMK-1 cells. Annexin V/PI staining was performed to investigate the apoptosis of TCMK-1 cells after NAC and different concentrations of CoNP treatments. In addition, western blot was performed to identify the cytokine (p-ERK, p-p38, and p-JNK) expression of the ROS-related MAPK signaling pathway.

Objective

Complex cobalt-chromium alloys, bearing surfaces of the second-generation metal-on-metal (MoM) hip prostheses, are subject to wear and generate cobalt nanoparticles (CoNPs). CoNPs could reduce cellular viability, activate the mitogen-activated protein kinase (MAPK) pathway and increase cell apoptosis via reactive oxygen species (ROS). However, the detailed mechanisms of ROS functioning on CoNP-mediated signaling molecules and cytotoxicity has not yet been fully demonstrated. The present study investigated the functional role of N-acetylcysteine (NAC) in reversing the activation of ROS signaling pathways triggered by CoNPs in normal mice kidney cells (TCMK-1 cells).

Results

Apoptosis rate of TCMK-1 cells was increased obviously after different concentrations of CoNP treatment. However, TCMK-1 cells, pretreated with NAC, exhibited a significantly decreased apoptosis rate. In addition, p-ERK, p-p38, and p-JNK expressions were increased with CoNP treatment, which indicated that CoNPs could activate the MAPK pathway. Interestingly, this entire stimulated phenomenon by CoNPs was reversed with NAC treatment. Conclusions: These findings indicated that NAC could reverse CoNP-induced cytotoxicity by inhibiting ROS-induced cell death and cytokine expression. To our knowledge, this is the first report that describes how CoNP-induced cytotoxicity in TCMK-1 cells could be attenuated by anti-oxidative agents (NAC), which may function through inhibition of cell death and ROS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。