Validation of an Analytical Method for Determination of 13 priority polycyclic aromatic hydrocarbons in mineral water using dispersive liquid-liquid microextraction and GC-MS

利用分散液液微萃取-气相色谱-质谱联用技术验证测定矿泉水中13种优先控制多环芳烃的分析方法

阅读:1
作者:Ramezan Sadeghi ,Farzad Kobarfard ,Hassan Yazdanpanah ,Samira Eslamizad ,Mitra Bayat

Abstract

Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC-MS) was used for the extraction and determination of 13 polycyclic aromatic hydrocarbons (PAHs) in mineral water samples. In this procedure, the suitable combination of extraction solvent (500 µL chloroform) and disperser solvent (1000 µL acetone) were quickly injected into the water sample (10.00 mL) by Hamilton syringe. After centrifugation, 500 µL of the lower organic phase was dried under a gentle stream of nitrogen, re-dissolved in chloroform and injected into GC-MS. Chloroform and acetone were found to be the best extraction and disperser solvent, respectively. Validation of the method was performed using spiked calibration curves. The enrichment factor ranged from 93 to 129 and the recovery ranged from 71 to 90%. The linear ranges for all the PAHs were 0.10-2.80 ngmL(-1). The relative standard deviations (RSDs) of PAHs in water by using anthracene-d10 as internal standard, were in the range of 4-11% for most of the analytes (n = 3). Limit of detection (LOD) for different PAHs were between 0.03 and 0.1 ngmL(-1). The method was successfully applied for the analysis of PAHs in mineral water samples collected from Tehran. Keywords: Dispersive Liquid-Liquid Microextraction (DLLME); GC-MS; Iran; Polycyclic aromatic hydrocarbons (PAHs); mineral water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。