Conclusions
Our study is the first to explore the potential relationship between the ecosystems, vectors, and the presence of Human Granulocytic Anaplasmosis (HGA) and other tick-borne infections in Western Ukraine. Anaplasma demonstrated a greater prevalence in I. ricinus in the forested area in Western Ukraine. Altogether, HGA, LD, and tick-borne encephalitis (TBE) pathogens are actively circulating in these ecosystems and have the potential to coinfect vectors that might increase the risk of transmitting multiple pathogens to humans during host feeding by individual ticks.
Results
Among the three selected ecological systems of the Western region of Ukraine, 5130 ticks belonging to Ixodes ricinus and Dermacentor reticulatus were collected between 2009 and 2014. They were grouped into 366 pools and were tested by PCR for A. phagocytophilum. A subsample (1620 ticks, 162 pools) of the ticks was concurrently tested by PCR for A. phagocytophilum, B. burgdorferi, and TBEV. Overall, there was no trend in the proportion of positive ticks across years (p > 0.05). However, the prevalence of A. phagocytophilum was higher (27.4%) in I. ricinus than in D. reticulatus (15.9%) (OR = 2.69; 95% CI, 1.52-4.94 (Lower, Upper 95% CI)). Infection was more common in forested habitats (OR = 1.89; 95% CI, 1.07-3.36) and during the later summer-early autumn (3.78; 95% CI, 1.79-8.06). B. burgdorferi was found in 29.3% and 31.9% of I. ricinus and D. reticulatus, respectively; and TBEV was found in 6.3% and 14.5% of I. ricinus and D. reticulatus. Coinfection of A. phagocytophilum and B. burgdorferi occurred more often than chance and was more frequent than any other combination of pathogens (p = 0.031). Conclusions: Our study is the first to explore the potential relationship between the ecosystems, vectors, and the presence of Human Granulocytic Anaplasmosis (HGA) and other tick-borne infections in Western Ukraine. Anaplasma demonstrated a greater prevalence in I. ricinus in the forested area in Western Ukraine. Altogether, HGA, LD, and tick-borne encephalitis (TBE) pathogens are actively circulating in these ecosystems and have the potential to coinfect vectors that might increase the risk of transmitting multiple pathogens to humans during host feeding by individual ticks.
