Novel Human Induced Pluripotent Stem Cell-Based Model for Retinal Pigment Epithelial Cells to Reveal Possible Disease Mechanisms for Macular Degeneration in Pseudoxanthoma Elasticum

基于人类诱导性多能干细胞的新型视网膜色素上皮细胞模型揭示弹性假黄瘤黄斑变性的可能疾病机制

阅读:15
作者:Taina Viheriälä, Heidi Hongisto, Lyydia Saari, Marika Oksanen, Tanja Ilmarinen, Suvi Väärämäki, Hannu Uusitalo, Pasi Nevalainen, Heli Skottman

Abstract

Pseudoxanthoma elasticum (PXE) is a rare metabolic disease with autosomal recessive inheritance. The manifestation in PXE is represented by retinal complications, pseudoxanthomas of the skin folding areas, and arterial calcification. The retinal complications are caused by the calcification of Bruch's membrane beneath retinal pigment epithelial cells (RPE) that can lead to retinal macular degeneration. The exact mechanism for the retinal pathophysiology is not known, and patients have variable symptoms and findings. Two induced pluripotent stem cell (hiPSC) lines from a patient carrying the common homozygous mutation c.3421C > T, p.Arg1141X in the ATP-binding cassette transporter gene (ABCC6; OMIM264800) were established and fully characterized. Then, RPE cells were differentiated, and molecular and functional characterization was conducted as a comparison to healthy controls. Data demonstrated that PXE-specific high-quality hiPSC lines can be established from a skin biopsy regardless of the skin-related disease phenotype and disease-specific RPE differentiation is feasible. The molecular and functional assessment of the PXE-specific RPE indicated increased pigmentation and reduced epithelial barrier functions as well as phagocytosis activity as compared to healthy controls. Although preliminary data, this indicates possible RPE-dependent factors that might explain the individual vulnerability of the retinas for macular degeneration in PXE. Future validation of the novel findings with additional PXE patients will be important.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。