In situ detection of fatty acid C=C positional isomers by coupling on-tissue mCPBA epoxidation with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry

通过将组织上 mCPBA 环氧化与红外基质辅助激光解吸电喷雾电离质谱法结合,原位检测脂肪酸 C=C 位置异构体

阅读:9
作者:Anqi Tu, Kenneth P Garrard, Neveen Said, David C Muddiman

Conclusions

The on-tissue mCPBA epoxidation was implemented into an ambient MS imaging workflow to offer a rapid and simple way for in situ identification and relative quantification of double-bond positional isomers without the requirement for instrument modification. The method can be readily implemented on many other MS platforms to reveal the role of double-bond positional isomers in lipid biology and to discover potential biomarkers.

Methods

m-Chloroperoxybenzoic acid (mCPBA) was uniformly deposited onto the sample slides using a TM Sprayer, converting the carbon-carbon double bonds into epoxides under ambient conditions. The epoxidation product was ionized in situ by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry (IR-MALDESI-MS), and subsequently cleaved via CID, generating a diagnostic ion pair associated with the double-bond position. The reaction efficiency, sensitivity and relative quantification capability of the method were validated with five UFA standards dried on glass slides, and then this strategy was demonstrated on thin tissue sections of rat liver and human bladder.

Results

The mCPBA reaction yielded conversion rates in the range of 44-60% in 10 min with high specificity and sensitivity. Further tandem mass spectrometry (MS/MS) of the mono-epoxidized products generated informative fragment ions specific to the double-bond positions, and relative quantification of positional isomers in binary mixtures was performed across a wide mole fraction from 0 to 1. An innovative spiral scan pattern was utilized during data acquisition, elucidating the major isomeric compositions of multiple UFAs from a tissue section in a single run. Conclusions: The on-tissue mCPBA epoxidation was implemented into an ambient MS imaging workflow to offer a rapid and simple way for in situ identification and relative quantification of double-bond positional isomers without the requirement for instrument modification. The method can be readily implemented on many other MS platforms to reveal the role of double-bond positional isomers in lipid biology and to discover potential biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。