MAGI1 as a link between endothelial activation and ER stress drives atherosclerosis

MAGI1 作为内皮细胞活化和内质网应激之间的纽带,导致动脉粥样硬化

阅读:6
作者:Jun-Ichi Abe, Kyung Ae Ko, Sivareddy Kotla, Yin Wang, Jesus Paez-Mayorga, Ik Jae Shin, Masaki Imanishi, Hang Thi Vu, Yunting Tao, Miguel M Leiva-Juarez, Tamlyn N Thomas, Jan L Medina, Jong Hak Won, Yuka Fujii, Carolyn J Giancursio, Elena McBeath, Ji-Hyun Shin, Liliana Guzman, Rei J Abe, Jack Taunton

Abstract

The possible association between the membrane-associated guanylate kinase with inverted domain structure-1 (MAGI1) and inflammation has been suggested, but the molecular mechanisms underlying this link, especially during atherogenesis, remain unclear. In endothelial cells (ECs) exposed to disturbed flow (d-flow), p90 ribosomal S6 kinase (p90RSK) bound to MAGI1, causing MAGI1-S741 phosphorylation and sentrin/SUMO-specific protease 2 T368 phosphorylation-mediated MAGI1-K931 deSUMOylation. MAGI1-S741 phosphorylation upregulated EC activation via activating Rap1. MAGI1-K931 deSUMOylation induced both nuclear translocation of p90RSK-MAGI1 and ATF-6-MAGI1 complexes, which accelerated EC activation and apoptosis, respectively. Microarray screening revealed key roles for MAGI1 in the endoplasmic reticulum (ER) stress response. In this context, MAGI1 associated with activating transcription factor 6 (ATF-6). MAGI1 expression was upregulated in ECs and macrophages found in atherosclerotic-prone regions of mouse aortas as well as in the colonic epithelia and ECs of patients with inflammatory bowel disease. Further, reduced MAGI1 expression in Magi1-/+ mice inhibited d-flow-induced atherogenesis. In sum, EC activation and ER stress-mediated apoptosis are regulated in concert by two different types of MAGI1 posttranslational modifications, elucidating attractive drug targets for chronic inflammatory disease, particularly atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。