Cholecystokinin is up-regulated in obese mouse islets and expands beta-cell mass by increasing beta-cell survival

胆囊收缩素在肥胖小鼠胰岛中上调,并通过增加β细胞存活率来扩大β细胞质量

阅读:6
作者:Jeremy A Lavine, Philipp W Raess, Donald S Stapleton, Mary E Rabaglia, Joshua I Suhonen, Kathryn L Schueler, James E Koltes, John A Dawson, Brian S Yandell, Linda C Samuelson, Margery C Beinfeld, Dawn Belt Davis, Marc K Hellerstein, Mark P Keller, Alan D Attie

Abstract

An absolute or functional deficit in beta-cell mass is a key factor in the pathogenesis of diabetes. We model obesity-driven beta-cell mass expansion by studying the diabetes-resistant C57BL/6-Leptin(ob/ob) mouse. We previously reported that cholecystokinin (Cck) was the most up-regulated gene in obese pancreatic islets. We now show that islet cholecystokinin (CCK) is up-regulated 500-fold by obesity and expressed in both alpha- and beta-cells. We bred a null Cck allele into the C57BL/6-Leptin(ob/ob) background and investigated beta-cell mass and metabolic parameters of Cck-deficient obese mice. Loss of CCK resulted in decreased islet size and reduced beta-cell mass through increased beta-cell death. CCK deficiency and decreased beta-cell mass exacerbated fasting hyperglycemia and reduced hyperinsulinemia. We further investigated whether CCK can directly affect beta-cell death in cell culture and isolated islets. CCK was able to directly reduce cytokine- and endoplasmic reticulum stress-induced cell death. In summary, CCK is up-regulated by islet cells during obesity and functions as a paracrine or autocrine factor to increase beta-cell survival and expand beta-cell mass to compensate for obesity-induced insulin resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。