Developmental toxicity and mechanism of dibutyl phthalate on the development of subintestinal vessels in zebrafish

邻苯二甲酸二丁酯对斑马鱼肠下血管发育的毒性及机制

阅读:7
作者:Wei Peng #, Xiaokun Yi #, Yuyang Peng, Huiqiang Lu, Haijin Liu

Background

The dibutyl phthalate (DBP) is a member of the phthalate family and is widely used as a plasticizer in daily life and production. However, the influence of DBP on the vascular developmental remains unclear.

Conclusions

DBP induced vascular developmental toxicity by enhancing oxidative stress levels, activating HIF pathway, and interfering with the expression of vascular development-related pathways in zebrafish, results in the abnormal development of the subintestinal vessels in zebrafish.

Methods

In this study, we used zebrafish as a model organism to investigate the effects of DBP on vascular development in vivo. Death curves of zebrafish at different concentrations of DBP exposure and different times incubation were made firstly. Zebrafish embryos after fertilization for 5.5 h were exposed to different concentrations of DBP solution (0, 0.4, 0.8, 1.2 mg/L), the body length, yolk sac absorption area, mortality and heart rate of zebrafish were measured, and the number and area of sprouting of ventral vessels were quantified by transgenic fish system. Reactive oxygen species (ROS) in zebrafish embryos were observed by DCFH-DA staining. Super oxide dimutese (SOD) and catalase (CAT) were determined with ELISA kits.

Results

We found that DBP increased the oxidative stress level of zebrafish exposed to DBP, and the genes related to vascular development also increased. Meanwhile, the activities of SOD and CAT were greatly decreased after DBP exposure. In the rescue experiment, we found that the antioxidant astaxanthin and the small molecule VEGF inhibitor ZM-306,416 can reverse the vascular dysplasia caused by DBP. Conclusions: DBP induced vascular developmental toxicity by enhancing oxidative stress levels, activating HIF pathway, and interfering with the expression of vascular development-related pathways in zebrafish, results in the abnormal development of the subintestinal vessels in zebrafish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。