Cellular dissection of malaria parasite invasion of human erythrocytes using viable Plasmodium knowlesi merozoites

使用活体诺氏疟原虫裂殖子对人类红细胞进行疟原虫入侵的细胞解剖

阅读:6
作者:Oliver Lyth, Gema Vizcay-Barrena, Katherine E Wright, Silvia Haase, Franziska Mohring, Adrian Najer, Isabelle G Henshall, George W Ashdown, Lawrence H Bannister, Damien R Drew, James G Beeson, Roland A Fleck, Robert W Moon, Danny W Wilson, Jake Baum

Abstract

Plasmodium knowlesi, a zoonotic parasite causing severe-to-lethal malaria disease in humans, has only recently been adapted to continuous culture with human red blood cells (RBCs). In comparison with the most virulent human malaria, Plasmodium falciparum, there are, however, few cellular tools available to study its biology, in particular direct investigation of RBC invasion by blood-stage P. knowlesi merozoites. This leaves our current understanding of biological differences across pathogenic Plasmodium spp. incomplete. Here, we report a robust method for isolating viable and invasive P. knowlesi merozoites to high purity and yield. Using this approach, we present detailed comparative dissection of merozoite invasion (using a variety of microscopy platforms) and direct assessment of kinetic differences between knowlesi and falciparum merozoites. We go on to assess the inhibitory potential of molecules targeting discrete steps of invasion in either species via a quantitative invasion inhibition assay, identifying a class of polysulfonate polymer able to efficiently inhibit invasion in both, providing a foundation for pan-Plasmodium merozoite inhibitor development. Given the close evolutionary relationship between P. knowlesi and P. vivax, the second leading cause of malaria-related morbidity, this study paves the way for inter-specific dissection of invasion by all three major pathogenic malaria species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。