Limited Impact of Soil Microorganisms on the Endophytic Bacteria of Tartary Buckwheat (Fagopyrum tataricum)

土壤微生物对苦荞麦内生细菌的影响有限

阅读:6
作者:Xuyan Liu, Xishen Zhu, Yumei Dong, Yan Chen, Meifang Li, Chengyun Li

Abstract

Soil has been considered the main microbial reservoir for plants, but the robustness of the plant microbiome when the soil resource is removed has not been greatly considered. In the present study, we tested the robustness of the microbiota recruited by Tartary buckwheat (Fagopyrum tataricum Gaertn.), grown on sterile humus soil and irrigated with sterile water. Our results showed that the microbiomes of the leaf, stem, root and next-generation seeds were comparable between treated (grown in sterile soil) and control plants (grown in non-sterile soil), indicating that the plants had alternative robust ways to shape their microbiome. Seed microbiota contributed greatly to endophyte communities in the phyllosphere, rhizosphere and next-generation seeds. The microbiome originated from the seeds conferred clear benefits to seedling growth because seedling height and the number of leaves were significantly increased when grown in sterilized soil. The overall microbiome of the plant was affected very little by the removal of the soil microbial resource. The microbial co-occurrence network exhibited more interactions, and Proteobacteria was enriched in the root of Tartary buckwheat planted in sterilized soil. Our research broadens the understanding of the general principles governing microbiome assembly and is widely applicable to both microbiome modeling and sustainable agriculture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。