Bioactivity of Serratiochelin A, a Siderophore Isolated from a Co-Culture of Serratia sp. and Shewanella sp

从沙雷氏菌和希瓦氏菌共培养中分离的铁载体 Serratichelin A 的生物活性

阅读:6
作者:Yannik Schneider, Marte Jenssen, Johan Isaksson, Kine Østnes Hansen, Jeanette Hammer Andersen, Espen H Hansen

Abstract

Siderophores are compounds with high affinity for ferric iron. Bacteria produce these compounds to acquire iron in iron-limiting conditions. Iron is one of the most abundant metals on earth, and its presence is necessary for many vital life processes. Bacteria from the genus Serratia contribute to the iron respiration in their environments, and previously several siderophores have been isolated from this genus. As part of our ongoing search for medicinally relevant compounds produced by marine microbes, a co-culture of a Shewanella sp. isolate and a Serratia sp. isolate, grown in iron-limited conditions, was investigated, and the rare siderophore serratiochelin A (1) was isolated with high yields. Compound 1 has previously been isolated exclusively from Serratia sp., and to our knowledge, there is no bioactivity data available for this siderophore to date. During the isolation process, we observed the degradation product serratiochelin C (2) after exposure to formic acid. Both 1 and 2 were verified by 1-D and 2-D NMR and high-resolution MS/MS. Here, we present the isolation of 1 from an iron-depleted co-culture of Shewanella sp. and Serratia sp., its proposed mechanism of degradation into 2, and the chemical and biological characterization of both compounds. The effects of 1 and 2 on eukaryotic and prokaryotic cells were evaluated, as well as their effect on biofilm formation by Staphylococcus epidermidis. While 2 did not show bioactivity in the given assays, 1 inhibited the growth of the eukaryotic cells and Staphylococcus aureus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。