Exploring the Landscape of Diazabicyclooctane (DBO) Inhibition: Avibactam Inactivation of PER-2 β-Lactamase

探索二氮杂双环辛烷 (DBO) 抑制的前景:阿维巴坦对 PER-2 β-内酰胺酶的失活

阅读:9
作者:Melina Ruggiero, Krisztina M Papp-Wallace, Magdalena A Taracila, Maria F Mojica, Christopher R Bethel, Susan D Rudin, Elise T Zeiser, Gabriel Gutkind, Robert A Bonomo, Pablo Power

Abstract

PER β-lactamases are an emerging family of extended-spectrum β-lactamases (ESBL) found in Gram-negative bacteria. PER β-lactamases are unique among class A enzymes as they possess an inverted omega (Ω) loop and extended B3 β-strand. These singular structural features are hypothesized to contribute to their hydrolytic profile against oxyimino-cephalosporins (e.g., cefotaxime and ceftazidime). Here, we tested the ability of avibactam (AVI), a novel non-β-lactam β-lactamase inhibitor to inactivate PER-2. Interestingly, the PER-2 inhibition constants (i.e., k2/K = 2 × 103 ± 0.1 × 103 M-1 s-1, where k2 is the rate constant for acylation (carbamylation) and K is the equilibrium constant) that were obtained when AVI was tested were reminiscent of values observed testing the inhibition by AVI of class C and D β-lactamases (i.e., k2/K range of ≈103 M-1 s-1) and not class A β-lactamases (i.e., k2/K range, 104 to 105 M-1 s-1). Once AVI was bound, a stable complex with PER-2 was observed via mass spectrometry (e.g., 31,389 ± 3 atomic mass units [amu] → 31,604 ± 3 amu for 24 h). Molecular modeling of PER-2 with AVI showed that the carbonyl of AVI was located in the oxyanion hole of the β-lactamase and that the sulfate of AVI formed interactions with the β-lactam carboxylate binding site of the PER-2 β-lactamase (R220 and T237). However, hydrophobic patches near the PER-2 active site (by Ser70 and B3-B4 β-strands) were observed and may affect the binding of necessary catalytic water molecules, thus slowing acylation (k2/K) of AVI onto PER-2. Similar electrostatics and hydrophobicity of the active site were also observed between OXA-48 and PER-2, while CTX-M-15 was more hydrophilic. To demonstrate the ability of AVI to overcome the enhanced cephalosporinase activity of PER-2 β-lactamase, we tested different β-lactam-AVI combinations. By lowering MICs to ≤2 mg/liter, the ceftaroline-AVI combination could represent a favorable therapeutic option against Enterobacteriaceae expressing blaPER-2 Our studies define the inactivation of the PER-2 ESBL by AVI and suggest that the biophysical properties of the active site contribute to determining the efficiency of inactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。