Molecular analysis of acute pyelonephritis-excessive innate and attenuated adaptive immunity

急性肾盂肾炎的分子分析-过度的先天性和减弱的适应性免疫

阅读:5
作者:Ines Ambite, Sing Ming Chao, Therese Rosenblad, Richard Hopkins, Petter Storm, Yong Hong Ng, Indra Ganesan, Magnus Lindén, Farhan Haq, Thi Hien Tran, Shahram Ahmadi, Bernett Lee, Swaine L Chen, Gabriela Godaly, Per Brandström, John E Connolly, Catharina Svanborg1

Abstract

This study investigated the molecular basis of disease severity in acute pyelonephritis (APN), a common and potentially life-threatening bacterial infection. Two cohorts of infants with febrile urinary tract infection were included. Renal involvement was defined by DMSA scans and molecular disease determinants by gene expression analysis and proteomic screens, at diagnosis and after 6 mo. Innate immune hyper-activation, systemically and locally in the urinary tract, was defined as a cytokine storm. Neutrophil degranulation and renal toxicity genes were strongly regulated, with overexpression in the APN group (first DMSA+). Adaptive immune attenuation in the APN group further supported the notion of an immune imbalance. DNA exome genotyping identified APN and febrile urinary tract infection as genetically distinct and scarring associated genes, but the activation of renal toxicity genes during acute infection was unrelated to the development of renal scarring. The results define APN as a hyper-inflammatory disorder with the characteristics of a cytokine storm combined with adaptive immune attenuation. The findings are consistent with innate immune dysfunctions and neutrophil disorders identified as determinants of APN susceptibility in genetic models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。