Aqueous Fraction from Cucumis sativus Aerial Parts Attenuates Angiotensin II-Induced Endothelial Dysfunction In Vivo by Activating Akt

黄瓜地上部分水相部分通过激活 Akt 减轻体内血管紧张素 II 诱导的内皮功能障碍

阅读:8
作者:Celeste Trejo-Moreno, Zimri Aziel Alvarado-Ojeda, Marisol Méndez-Martínez, Mario Ernesto Cruz-Muñoz, Gabriela Castro-Martínez, Gerardo Arrellín-Rosas, Alejandro Zamilpa, Jesús Enrique Jimenez-Ferrer, Juan Carlos Baez Reyes, Gladis Fragoso, Gabriela Rosas Salgado

Background

Endothelial dysfunction (ED) is a marker of vascular damage and a precursor of cardiovascular diseases such as hypertension, which involve inflammation and organ damage. Nitric oxide (NO), produced by eNOS, which is induced by pAKT, plays a crucial role in the function of a healthy endothelium.

Conclusions

Cs-AqC4 controlled inflammation and vascular remodeling, alleviating hypertension; it also improved tissue damage associated with ED, probably via Akt activation.

Methods

A combination of subfractions SF1 and SF3 (C4) of the aqueous fraction from Cucumis sativus (Cs-Aq) was evaluated to control endothelial dysfunction in vivo and on HMEC-1 cells to assess the involvement of pAkt in vitro. C57BL/6J mice were injected daily with angiotensin II (Ang-II) for 10 weeks. Once hypertension was established, either Cs-AqC4 or losartan was orally administered along with Ang-II for a further 10 weeks. Blood pressure (BP) was measured at weeks 0, 5, 10, 15, and 20. In addition, serum creatinine, inflammatory status (in the kidney), tissue damage, and vascular remodeling (in the liver and aorta) were evaluated. Cs-AqC4 was also tested in vitro on HMEC-1 cells stimulated by Ang-II to assess the involvement of Akt phosphorylation.

Results

Cs-AqC4 decreased systolic and diastolic BP, reversed vascular remodeling, decreased IL-1β and TGF-β, increased IL-10, and decreased kidney and liver damage. In HMEC-1 cells, AKT phosphorylation and NO production were increased. Conclusions: Cs-AqC4 controlled inflammation and vascular remodeling, alleviating hypertension; it also improved tissue damage associated with ED, probably via Akt activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。