Diazepam is not a direct allosteric modulator of α1-adrenoceptors, but modulates receptor signaling by inhibiting phosphodiesterase-4

地西泮不是 α1-肾上腺素能受体的直接变构调节剂,而是通过抑制磷酸二酯酶-4 来调节受体信号传导

阅读:6
作者:Lisa M Williams, Xiaoji He, Tasneem M Vaid, Alaa Abdul-Ridha, Alice R Whitehead, Paul R Gooley, Ross A D Bathgate, Spencer J Williams, Daniel J Scott

Abstract

α1A- and α1B-adrenoceptors (ARs) are G protein-coupled receptors (GPCRs) that are activated by adrenaline and noradrenaline to modulate smooth muscle contraction in the periphery, and neuronal outputs in the central nervous system (CNS). α1A- and α1B-AR are clinically targeted with antagonists for hypertension and benign prostatic hyperplasia and are emerging CNS targets for treating neurodegenerative diseases. The benzodiazepines midazolam, diazepam, and lorazepam are proposed to be positive allosteric modulators (PAMs) of α1-ARs. Here, using thermostabilized, purified, α1A- and α1B-ARs, we sought to identify the benzodiazepine binding site and modulatory mechanism to inform the design of selective PAMs. However, using a combination of biophysical approaches no evidence was found for direct binding of several benzodiazepines to purified, stabilized α1A- and α1B-ARs. Similarly, in cell-based assays expressing unmodified α1A- and α1B-ARs, benzodiazepine treatment had no effect on fluorescent ligand binding, agonist-stimulated Ca2+ release, or G protein activation. In contrast, several benzodiazepines positively modulated phenylephrine stimulation of a cAMP response element pathway by α1A- and α1B-ARs; however, this was shown to be caused by off-target inhibition of phosphodiesterases, known targets of diazepam. This study highlights how purified, stabilized GPCRs are useful for validating allosteric ligand binding and that care needs to be taken before assigning new targets to benzodiazepines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。