Human Mitochondrial Cytochrome b Variants Studied in Yeast: Not All Are Silent Polymorphisms

在酵母中研究人类线粒体细胞色素 b 变体:并非所有变体都是静默多态性

阅读:6
作者:Zehua Song, Anaïs Laleve, Cindy Vallières, John E McGeehan, Rhiannon E Lloyd, Brigitte Meunier

Abstract

Variations in mitochondrial DNA (mtDNA) cytochrome b (mt-cyb) are frequently found within the healthy population, but also occur within a spectrum of mitochondrial and common diseases. mt-cyb encodes the core subunit (MT-CYB) of complex III, a central component of the oxidative phosphorylation system that drives cellular energy production and homeostasis. Despite significant efforts, most mt-cyb variations identified are not matched with corresponding biochemical data, so their functional and pathogenic consequences in humans remain elusive. While human mtDNA is recalcitrant to genetic manipulation, it is possible to introduce human-associated point mutations into yeast mtDNA. Using this system, we reveal direct links between human mt-cyb variations in key catalytic domains of MT-CYB and significant changes to complex III activity or drug sensitivity. Strikingly, m.15257G>A (p.Asp171Asn) increased the sensitivity of yeast to the antimalarial drug atovaquone, and m.14798T>C (p.Phe18Leu) enhanced the sensitivity of yeast to the antidepressant drug clomipramine. We demonstrate that while a small number of mt-cyb variations had no functional effect, others have the capacity to alter complex III properties, suggesting they could play a wider role in human health and disease than previously thought. This compendium of new mt-cyb-biochemical relationships in yeast provides a resource for future investigations in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。