Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament

使用 3D 打印机和市售蜡丝制造纸基微流体装置

阅读:6
作者:Antonio Espinosa, Joannes Diaz, Edgar Vazquez, Lina Acosta, Arianna Santiago, Lisandro Cunci

Abstract

In this work, we developed an alternative manufacturing paper-based microfluidics method through 3D printing and wax filament. Microfluidic paper-based analytical devices (μPADs) are low-cost and easy-to-manufacture tools used for various chemical and biological analyses and studies. Paper-based microfluidics with wax has been limited as the manufacturers have discontinued most wax printing equipment. We aim to develop a low-cost and accessible manufacturing method that can replace conventional wax-on paper-based microfluidic manufacturing methods. Using highly available commercial 3D printing technology and wax filament, we could create hydrophobic wax barriers on the surface of different paper types. The properties and limits of this manufacturing method were characterized. Moreover, using this paper-based microfluidic manufacturing method, we were able to measure dopamine electrochemically using μPAD as a passive flow-based method in concentrations as low as 1 nM using injections as small as 15 μL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。